首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   34篇
  国内免费   6篇
综合类   6篇
化学工业   47篇
金属工艺   4篇
机械仪表   7篇
能源动力   7篇
轻工业   18篇
石油天然气   1篇
无线电   8篇
一般工业技术   68篇
自动化技术   20篇
  2023年   12篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   8篇
  2015年   27篇
  2014年   14篇
  2013年   11篇
  2012年   19篇
  2011年   11篇
  2010年   12篇
  2009年   9篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
排序方式: 共有186条查询结果,搜索用时 81 毫秒
1.
Image color clustering is a basic technique in image processing and computer vision, which is often applied in image segmentation, color transfer, contrast enhancement, object detection, skin color capture, and so forth. Various clustering algorithms have been employed for image color clustering in recent years. However, most of the algorithms require a large amount of memory or a predetermined number of clusters. In addition, some of the existing algorithms are sensitive to the parameter configurations. In order to tackle the above problems, we propose an image color clustering method named Student's t-based density peaks clustering with superpixel segmentation (tDPCSS), which can automatically obtain clustering results, without requiring a large amount of memory, and is not dependent on the parameters of the algorithm or the number of clusters. In tDPCSS, superpixels are obtained based on automatic and constrained simple non-iterative clustering, to automatically decrease the image data volume. A Student's t kernel function and a cluster center selection method are adopted to eliminate the dependence of the density peak clustering on parameters and the number of clusters, respectively. The experiments undertaken in this study confirmed that the proposed approach outperforms k-means, fuzzy c-means, mean-shift clustering, and density peak clustering with superpixel segmentation in the accuracy of the cluster centers and the validity of the clustering results.  相似文献   
2.
The low shear rate rheology of two phase mesophase pitches derived from coal tar pitch has been investigated. Particulate quinoline insolubles (QI) stabilised the mesophase spheres against coalescence. Viscosity measurements over the range 10–106 Pa s were made at appropriate temperature ranges. Increasing shear thinning behaviour was evident with increasing mesophase content. At low mesophase contents the dominant effect on the near Newtonian viscosity was temperature but at higher contents it was the shear rate; temperature dependence declined to near zero. The data indicated that agglomeration could be occurring at intermediate mesophase volume fractions, 0.2–0.3. The Krieger–Dougherty function and its emulsion analogue indicated that in this region the mesophase pitch emulsions actually behaved like ‘hard’ sphere systems and the effective volume fraction was estimated as a function of shear rate illustrating the change in extent of agglomeration. At the higher volume fractions approaching the maximum packing fraction, which could only be measured at higher temperatures, the shear thinning behaviour changed in character and it is considered that this is possibly due to shear induced deformation and breakup of dispersed drops in the shear field.  相似文献   
3.
Dodecyl amine (DA) functionalized graphene oxide(DA‐GO) and dodecyl amine functionalized reduced graphene oxide (DA‐RGO) were produced by using amidation reaction and chemical reduction, then two kinds of well dispersed DA‐GO/high‐density polyethylene (HDPE) and DA‐RGO/HDPE nanocomposites were prepared by solution mixing method and hot‐pressing process. Thermogravimetric, X‐ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, X‐ray diffractions, and Raman spectroscopy analyses showed that DA was successfully grafted onto the graphene oxide surface by uncleophilic substitution and the amidation reaction, which increased the intragallery spacing of graphite oxide, resulting in the uniform dispersion of DA‐GO and DA‐RGO in the nonpolar xylene solvent. Morphological analysis of nanocomposites showed that both DA‐GO and DA‐RGO were homogeneously dispersed in HDPE matrix and formed strong interfacial interaction. Although the crystallinity, dynamic mechanical, gas barrier, and thermal stability properties of HDPE were significantly improved by addition of small amount of DA‐GO or DA‐RGO, the performance comparison of DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites indicated that the reduction of DA‐GO was not necessary because the interfacial adhesion and aspect ratio of graphene sheets had hardly changed after reduction, which resulting in almost the same properties between DA‐GO/HDPE and DA‐RGO/HDPE nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39803.  相似文献   
4.
Recycled packaging‐waste polyethylene (WPE) was used to replace the ordinary polymer modifier in the modification of raw asphalt, and the pavement properties of the modified asphalt were studied. The high‐temperature stability, anti‐cracking properties at low temperature, life span, and stability against water of the asphalt mixture were improved, a finding which is attributed to the properties and characteristics of WPE, the swelling of sheared WPE, and the WPE/asphalt network structure. The use of packaging WPE can improve the pavement properties of asphalt, as well as save resources and reduce white pollution. J. VINYL ADDIT. TECHNOL., 20:31–35, 2014. © 2014 Society of Plastics Engineers  相似文献   
5.
Si3N4 whisker (Si3N4w) reinforced composites were prepared by a near-net shaping process, i.e., gel-casting of the Si3N4w preform followed by polymer infiltration and pyrolysis (PIP) densification using polysilazane as precursor. The densification process by PIP was described mathematically, after which several key parameters affecting densification efficiency were discussed. The small pore size (0.04 ~ 1 μm) of Si3N4w preform can cause filtration effect (low permeability of precursor with a molecular size bigger than pore size), which resulted in the density gradient of the composites. Porosity (P) dependence of flexural strength and elastic modulus of Si3N4w/Si3N4 followed a power law of (1 – P). With increasing density, the response of Si3N4w when confronting cracks transformed from whisker debonding to whisker fracture, which was supposed to be due to the increase of whisker/matrix interface strength. The Si3N4w/Si3N4 developed by us achieved a good balance between high strength and low dielectric constant, making it promising for high-temperature wave-transparent application.  相似文献   
6.
High surface area BiFeO3 (BFO) bowl arrays photocatalyst loaded with different size noble metal nanoparticles were successfully prepared by combining templates method and thermal evaporation followed by heating. The structural and optical properties of the BiFeO3 bowl arrays and the composite M@BFO bowl arrays (M = Ag, Au) were comparatively characterized. The composite M@BFO bowl arrays showed much higher photocatalytic performance than the pure BFO bowl arrays. The enhanced photocatalytic property of the composite structure could be ascribed to the enhanced near‐field amplitudes of localized surface plasmon of the noble metal nanoparticles which boost the separation of electron–hole pairs and the transfer mechanism of electrons.  相似文献   
7.
We report preparation of graphene oxide (GO) from expanded graphite (EG) via a modified Hummers method. GO/PVDF composites films were obtained using solvent N, N‐Dimethylformamide (DMF) and cosolvent comprising deionized water/DMF combination. X‐ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses revealed that the main crystal structure of the composite films is β‐phase, and use cosolvent method tends to favor the formation of β‐phase. Scanning electron microscopy (SEM) was used to investigate the microstructure of composite films. Storage modulus and loss modulus were measured by Dynamic mechanical analysis (DMA). Broadband dielectric spectrum tests showed an increase in the dielectric constant of the GO/PVDF composite films with the rising content of GO, and by cosolvent method could improve the dielectric constant while reducing the dielectric loss. Our method that uses GO as an additive and deionized water/DMF as the cosolvent provides a promising and low‐cost pathway to obtain high dielectric materials. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41577.  相似文献   
8.
Polyhedral oligomeric silsesquioxane grafting thermally conductive silicon carbide particle (POSS-g-SiCp) fillers, are performed to fabricate highly thermally conductive ultra high molecular weight polyethylene (UHMWPE) composites combining with optimal dielectric properties and excellent thermal stabilities, via mechanical ball milling followed by hot-pressing method. The POSS-g-SiCp/UHMWPE composite with 40 wt% POSS-g-SiCp exhibits relative higher thermal conductivity, lower dielectric constant and more excellent thermal stability, the corresponding thermally conductive coefficient of 1.135 W/mK, the dielectric constant of 3.22, and the 5 wt% thermal weight loss temperature of 423 °C, which holds potential for packaging and thermal management in microelectronic devices. Agari’s semi-empirical model fitting reveals POSS-g-SiCp fillers have strong ability to form continuous thermally conductive networks.  相似文献   
9.
This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed.  相似文献   
10.
面对大数据引发的信息革命浪潮及国家文化产业大发展、大繁荣的新形势,我国传统小微印刷企业面临着严峻挑战与历史机遇.我国小微印刷企业普遍存在创新能力欠缺、产业结构不合理、盈利手段单一、抗风险能力较差及污染环境等诸多弊病,小微印刷业应顺应时代潮流,抓住历史机遇,加快由传统加工型产业向现代服务业转型的步伐.我国小微印刷企业可采取融入文化创意元素、丰富印刷文化内涵,对接互联网络平台、探索增值盈利模式,推行全数字化流程、发展绿色按需印刷等科学转型之道,以实现企业的转型升级.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号